
Python 102: Beyond the Basics
PyTexas 2024 - April 19, 2024

Mason Egger

1

Hi. I'm Mason!

• Sr. Technical Curriculum Developer

• Programmer (http://github.com/masonegger)

• Author (https://mason.dev)

• PyTexas Community Organizer (https://pytexas.org)

• Teacher

2

http://github.com/masonegger
https://mason.dev
https://pytexas.org

Logistics

• Schedule

• Asking questions

• Getting help with the exercises

3

Exercise Environment
• I provide a development environment for you in this workshop

• It uses Google Colaboratory, a hosted Jupyter Notebook Service

• You access it through your browser (may require you to log in to Google)

• You may also clone the exercises onto your local machine

• I will now demonstrate how to access and use it

bit.ly/pytexas2024-102
4

https://bit.ly/pytexas2024-102

Inspiration for the Course

5

Today...

• Evaluate what makes a Python function first-class

• Construct decorators to enhance the behavior of a function

• Implement comprehensions to simplify the construction of new
sequences

• Extend objects using dunder methods, allowing for interaction with
built-in functions and operators

• Use context managers to manage the spin-up/tear-down of various
objects and processes

6

Part I: First-Class Functions

7

First-Class Functions
• In Python, all functions are considered First-Class Functions

• Functions are considered First-Class if they can be:

• Created at runtime

• Assigned to a variable or element in a data structure

• Passed as an argument to a function

• Returned as the result of a function

• "First-Class Functions" means being able to treat a function like an object

8

Functions as Objects (Variable Assignment)

You're familiar with creating objects in Python

text = "Hello PyTexas"
print(text)

9

Functions as Objects (Function Definition)

And you're familiar with creating functions in Python

function definition
def my_func(text):
 print(text)

function call
my_func("Hello PyTexas from a function")

10

Functions as Objects (Function Definition)

And you're familiar with creating functions in Python

function definition
def my_func(text):
 print(text)

function call
my_func("Hello PyTexas from a function")

10

Functions as Objects (Function Definition)

And you're familiar with creating functions in Python

function definition
def my_func(text):
 print(text)

function call
my_func("Hello PyTexas from a function")

10

Assigning a Function to a Variable

But you can also assign a function to a variable

function definition
def my_func(text):
 print(text)

function assignment
x = my_func

function call
x("Hello PyTexas from a function assigned to a variable")

11

Assigning a Function to a Variable

But you can also assign a function to a variable

function definition
def my_func(text):
 print(text)

function assignment
x = my_func

function call
x("Hello PyTexas from a function assigned to a variable")

11

Assigning a Function to a Variable

But you can also assign a function to a variable

function definition
def my_func(text):
 print(text)

function assignment
x = my_func

function call
x("Hello PyTexas from a function assigned to a variable")

11

Assigning a Function to a Variable

But you can also assign a function to a variable

function definition
def my_func(text):
 print(text)

function assignment
x = my_func

function call
x("Hello PyTexas from a function assigned to a variable")

11

Passing Functions to Other Functions

You can even pass functions as arguments

function definition
def pass_func(func):
 func("Passing a function as a parameter")

Using `my_func` from the previous slide/cell
pass_func(my_func)

12

Passing Functions to Other Functions

You can even pass functions as arguments

function definition
def pass_func(func):
 func("Passing a function as a parameter")

Using `my_func` from the previous slide/cell
pass_func(my_func)

12

Passing Functions to Other Functions

You can even pass functions as arguments

function definition
def pass_func(func):
 func("Passing a function as a parameter")

Using `my_func` from the previous slide/cell
pass_func(my_func)

12

Passing Functions to Other Functions

You can even pass functions as arguments

function definition
def pass_func(func):
 func("Passing a function as a parameter")

Using `my_func` from the previous slide/cell
pass_func(my_func)

12

Functions are Objects

This is possible because functions in Python are objects

print(my_func)
print(pass_func)

13

Other Object Properties

Since a function is just an object in Python, you can use the
function the same way you would use any object. You can:

• Pass them to other functions

• Return functions from other functions

• Store functions in data structures

14

Storing a Function in a Dict

my_dict = {"my_func": my_func}
my_dict["my_func"]("Hello PyTexas from a dict")

15

Storing a Function in a Dict

my_dict = {"my_func": my_func}
my_dict["my_func"]("Hello PyTexas from a dict")

15

Storing a Function in a Dict

my_dict = {"my_func": my_func}
my_dict["my_func"]("Hello PyTexas from a dict")

15

Higher-Order Functions

A function that takes a function as an argument or returns a functions
as the result is considered a higher-order function. Higher-Order
Functions are great for abstracting and modularizing code, allowing
you to compose more complex logic out of simpler functions.

function definition
def pass_func(func):
 func("Passing a function as a parameter")

Using `my_func` from the previous slide/cell
pass_func(my_func)

16

Higher-Order Functions in the Standard
Library

The standard library is filled with higher-order functions. Popular
ones include map, filter, reduce, and sort.

my_list = ["bluebonnet", "lonestar", "armadillo", "bbq"]
print(len("bbq"))

The `len` function, which determines the length of a
str was passed to the `sorted` function
sorted(my_list, key=len)

17

Higher-Order Functions in the Standard
Library

The standard library is filled with higher-order functions. Popular
ones include map, filter, reduce, and sort.

my_list = ["bluebonnet", "lonestar", "armadillo", "bbq"]
print(len("bbq"))

The `len` function, which determines the length of a
str was passed to the `sorted` function
sorted(my_list, key=len)

17

Higher-Order Functions in the Standard
Library

The standard library is filled with higher-order functions. Popular
ones include map, filter, reduce, and sort.

my_list = ["bluebonnet", "lonestar", "armadillo", "bbq"]
print(len("bbq"))

The `len` function, which determines the length of a
str was passed to the `sorted` function
sorted(my_list, key=len)

17

Higher-Order Functions in the Standard
Library

The standard library is filled with higher-order functions. Popular
ones include map, filter, reduce, and sort.

my_list = ["bluebonnet", "lonestar", "armadillo", "bbq"]
print(len("bbq"))

The `len` function, which determines the length of a
str was passed to the `sorted` function
sorted(my_list, key=len)

17

Passing args and kwargs to a Function

When defining a function, you can pass either a specific set of
arguments or an undefined amount using *args for positional
arguments or **kwargs for keyword arguments.

def my_func(*args, **kwargs):
 print(args)
 print(kwargs)

my_func("hello", "goodbye", language="en", capitalize=True)

18

Passing args and kwargs to a Function

When defining a function, you can pass either a specific set of
arguments or an undefined amount using *args for positional
arguments or **kwargs for keyword arguments.

def my_func(*args, **kwargs):
 print(args)
 print(kwargs)

my_func("hello", "goodbye", language="en", capitalize=True)

18

Passing args and kwargs to a Function

When defining a function, you can pass either a specific set of
arguments or an undefined amount using *args for positional
arguments or **kwargs for keyword arguments.

def my_func(*args, **kwargs):
 print(args)
 print(kwargs)

my_func("hello", "goodbye", language="en", capitalize=True)

18

Passing args and kwargs to a Function

When defining a function, you can pass either a specific set of
arguments or an undefined amount using *args for positional
arguments or **kwargs for keyword arguments.

def my_func(*args, **kwargs):
 print(args)
 print(kwargs)

my_func("hello", "goodbye", language="en", capitalize=True)

18

Passing args and kwargs to a Function

When defining a function, you can pass either a specific set of
arguments or an undefined amount using *args for positional
arguments or **kwargs for keyword arguments.

def my_func(*args, **kwargs):
 print(args)
 print(kwargs)

my_func("hello", "goodbye", language="en", capitalize=True)

18

Passing args and kwargs to a Function

When defining a function, you can pass either a specific set of
arguments or an undefined amount using *args for positional
arguments or **kwargs for keyword arguments.

def my_func(*args, **kwargs):
 print(args)
 print(kwargs)

my_func("hello", "goodbye", language="en", capitalize=True)

18

Anonymous Functions (aka Lambda
Functions)

• Anonymous functions can take any number of arguments, but can
only have one expression

• A concise way of creating small, one-line functions

• Useful where a short function is needed for a specific purpose, such
as passing a simple function as an arguement to another function

• Implemented using the lambda keyword in Python

19

Anonymous Functions Examples

Example 1

add_one = lambda x: x+1
add_one(2)

Example 2

my_list = ["bluebonnet", "lonestar", "armadillo", "bbq"]

Sort by the last letter
sorted(my_list, key=lambda x: x[-1])

20

Anonymous Functions Examples

Example 1

add_one = lambda x: x+1
add_one(2)

Example 2

my_list = ["bluebonnet", "lonestar", "armadillo", "bbq"]

Sort by the last letter
sorted(my_list, key=lambda x: x[-1])

20

Anonymous Functions Examples

Example 1

add_one = lambda x: x+1
add_one(2)

Example 2

my_list = ["bluebonnet", "lonestar", "armadillo", "bbq"]

Sort by the last letter
sorted(my_list, key=lambda x: x[-1])

20

Anonymous Functions Examples

Example 1

add_one = lambda x: x+1
add_one(2)

Example 2

my_list = ["bluebonnet", "lonestar", "armadillo", "bbq"]

Sort by the last letter
sorted(my_list, key=lambda x: x[-1])

20

Anonymous Functions Examples

Example 1

add_one = lambda x: x+1
add_one(2)

Example 2

my_list = ["bluebonnet", "lonestar", "armadillo", "bbq"]

Sort by the last letter
sorted(my_list, key=lambda x: x[-1])

20

Anonymous Functions Examples

Example 1

add_one = lambda x: x+1
add_one(2)

Example 2

my_list = ["bluebonnet", "lonestar", "armadillo", "bbq"]

Sort by the last letter
sorted(my_list, key=lambda x: x[-1])

20

Function Introspection

Functions have many attributes. Use the dir function to view all
the methods associated with the function.

dir(my_func)

21

Using dir with Classes

You can use dir to see the methods within a class

dir(list)

22

Using help() to introspect

You can also use the help() command to read a function or
classes documentation.

help(list)

23

Summary (Pt. 1)

• Functions are considered First-Class in Python

• First-Class means that the function is treated like an object

• Just like other objects, functions can be:

• Created at runtime

• Assigned to a variable or element in a data structure

• Passed as an argument to a function

• Returned as the result of a function
24

Summary (Pt. 2)

• Functions that take other functions as parameters, or return a
function as a result is known as a Higher-Order Function

• Anonymous functions are implemented using the lambda
keyword, and are good for creating concise, one off functions.

25

Exercise 1 - First-Class Functions
• In these exercises you will:

• Implement a Higher-Order function

• Implement a lambda function being passed to filter and sorted
• Go to the Exercise Directory in the Google Drive and open the Practice Directory

• Open 01-First-Class-Functions-Exercises-Solution.ipynb and follow the instructions

• If you get stuck, raise your hand and someone will come by and help. You can
also check the Solution directory for the answers

• You have 10 mins

26

Part II: Decorators and Closures

27

Decorators & Closures

• Decorators allow us to "mark" functions to enhance their
behavior

• Work by wrapping another function and adding functionality to it

• Can be applied to both functions and classes

• Allow for reusability and promote a clean, concise coding style

28

Decorators in the Wild

You may have seen decorators before:

from flask import Flask
app = Flask(__name__)

@app.route("/")
def helloworld():
 return "Hello World!"

29

Decorators in the Wild

You may have seen decorators before:

from flask import Flask
app = Flask(__name__)

@app.route("/")
def helloworld():
 return "Hello World!"

29

Decorator Syntax

A decorator is the name of the decorator, prepended with the @
sign, place above the function definition

@my_decorator
def my_func(text):
 print(text)

Here we say that my_decorator decorates my_func

30

Decorator Syntax

A decorator is the name of the decorator, prepended with the @
sign, place above the function definition

@my_decorator
def my_func(text):
 print(text)

Here we say that my_decorator decorates my_func

30

A Decorator is Higher-Order Function

Decorators are syntactic sugar for Higher-Order Functions. These
two snippets of code are equivalent.

@my_decorator
def my_function(text):
 print(text)

function definition
def my_function(text):
 print(text)

function call
my_function = my_decorator(text)

31

Decorator Example

A decorator usually replaces a function with a different one.

def decorator(func):
 def inner():
 return "Running inner"
 return inner

@decorator
def my_func():
 return "Hello PyTexas"

result = my_func()
print(result)

32

Decorator Example

A decorator usually replaces a function with a different one.

def decorator(func):
 def inner():
 return "Running inner"
 return inner

@decorator
def my_func():
 return "Hello PyTexas"

result = my_func()
print(result)

32

Decorator Example

A decorator usually replaces a function with a different one.

def decorator(func):
 def inner():
 return "Running inner"
 return inner

@decorator
def my_func():
 return "Hello PyTexas"

result = my_func()
print(result)

32

Decorator Example

A decorator usually replaces a function with a different one.

def decorator(func):
 def inner():
 return "Running inner"
 return inner

@decorator
def my_func():
 return "Hello PyTexas"

result = my_func()
print(result)

32

Decorator Example

A decorator usually replaces a function with a different one.

def decorator(func):
 def inner():
 return "Running inner"
 return inner

@decorator
def my_func():
 return "Hello PyTexas"

result = my_func()
print(result)

32

Decorator Example

A decorator usually replaces a function with a different one.

def decorator(func):
 def inner():
 return "Running inner"
 return inner

@decorator
def my_func():
 return "Hello PyTexas"

result = my_func()
print(result)

32

Decorator Example

A decorator usually replaces a function with a different one.

def decorator(func):
 def inner():
 return "Running inner"
 return inner

@decorator
def my_func():
 return "Hello PyTexas"

result = my_func()
print(result)

32

Passing Variables to the Decorator
When passing variables to the decorator function, it's easy to forget to include the variables in
the new function definition. Remember that the function object will be replaced by the
decorator. So any parameters required in the original function header will be lost.

def decorator(func):
 def inner(text):
 return f"Passed message: {text}"
 return inner

@decorator
def my_func():
 return "Hello to PyTexas"

result = my_func("Hello from PyTexas")
print(result)

33

Passing Variables to the Decorator
When passing variables to the decorator function, it's easy to forget to include the variables in
the new function definition. Remember that the function object will be replaced by the
decorator. So any parameters required in the original function header will be lost.

def decorator(func):
 def inner(text):
 return f"Passed message: {text}"
 return inner

@decorator
def my_func():
 return "Hello to PyTexas"

result = my_func("Hello from PyTexas")
print(result)

33

Passing Variables to the Decorator
When passing variables to the decorator function, it's easy to forget to include the variables in
the new function definition. Remember that the function object will be replaced by the
decorator. So any parameters required in the original function header will be lost.

def decorator(func):
 def inner(text):
 return f"Passed message: {text}"
 return inner

@decorator
def my_func():
 return "Hello to PyTexas"

result = my_func("Hello from PyTexas")
print(result)

33

Passing Variables to the Decorator
When passing variables to the decorator function, it's easy to forget to include the variables in
the new function definition. Remember that the function object will be replaced by the
decorator. So any parameters required in the original function header will be lost.

def decorator(func):
 def inner(text):
 return f"Passed message: {text}"
 return inner

@decorator
def my_func():
 return "Hello to PyTexas"

result = my_func("Hello from PyTexas")
print(result)

33

Passing Variables to the Decorator
When passing variables to the decorator function, it's easy to forget to include the variables in
the new function definition. Remember that the function object will be replaced by the
decorator. So any parameters required in the original function header will be lost.

def decorator(func):
 def inner(text):
 return f"Passed message: {text}"
 return inner

@decorator
def my_func():
 return "Hello to PyTexas"

result = my_func("Hello from PyTexas")
print(result)

33

Passing Variables to the Decorator
When passing variables to the decorator function, it's easy to forget to include the variables in
the new function definition. Remember that the function object will be replaced by the
decorator. So any parameters required in the original function header will be lost.

def decorator(func):
 def inner(text):
 return f"Passed message: {text}"
 return inner

@decorator
def my_func():
 return "Hello to PyTexas"

result = my_func("Hello from PyTexas")
print(result)

33

Passing Variables to the Decorator
When passing variables to the decorator function, it's easy to forget to include the variables in
the new function definition. Remember that the function object will be replaced by the
decorator. So any parameters required in the original function header will be lost.

def decorator(func):
 def inner(text):
 return f"Passed message: {text}"
 return inner

@decorator
def my_func():
 return "Hello to PyTexas"

result = my_func("Hello from PyTexas")
print(result)

33

Passing Variables to the Decorator
When passing variables to the decorator function, it's easy to forget to include the variables in
the new function definition. Remember that the function object will be replaced by the
decorator. So any parameters required in the original function header will be lost.

def decorator(func):
 def inner(text):
 return f"Passed message: {text}"
 return inner

@decorator
def my_func():
 return "Hello to PyTexas"

result = my_func("Hello from PyTexas")
print(result)

33

Passing Variables to the Decorator
When passing variables to the decorator function, it's easy to forget to include the variables in
the new function definition. Remember that the function object will be replaced by the
decorator. So any parameters required in the original function header will be lost.

def decorator(func):
 def inner(text):
 return f"Passed message: {text}"
 return inner

@decorator
def my_func():
 return "Hello to PyTexas"

result = my_func("Hello from PyTexas")
print(result)

33

Using Decorators to Enhance Capabilities
However, it seems odd to just throw the entire function away. Decorators are usually used to
add functionality to functions.

def reverse(func):
 def inner():
 x = func()
 return x[::-1]
 return inner

@reverse
def my_func():
 return "Hello PyTexas"

result = my_func()
print(result)

34

Using Decorators to Enhance Capabilities
However, it seems odd to just throw the entire function away. Decorators are usually used to
add functionality to functions.

def reverse(func):
 def inner():
 x = func()
 return x[::-1]
 return inner

@reverse
def my_func():
 return "Hello PyTexas"

result = my_func()
print(result)

34

Using Decorators to Enhance Capabilities
However, it seems odd to just throw the entire function away. Decorators are usually used to
add functionality to functions.

def reverse(func):
 def inner():
 x = func()
 return x[::-1]
 return inner

@reverse
def my_func():
 return "Hello PyTexas"

result = my_func()
print(result)

34

Using Decorators to Enhance Capabilities
However, it seems odd to just throw the entire function away. Decorators are usually used to
add functionality to functions.

def reverse(func):
 def inner():
 x = func()
 return x[::-1]
 return inner

@reverse
def my_func():
 return "Hello PyTexas"

result = my_func()
print(result)

34

Using Decorators to Enhance Capabilities
However, it seems odd to just throw the entire function away. Decorators are usually used to
add functionality to functions.

def reverse(func):
 def inner():
 x = func()
 return x[::-1]
 return inner

@reverse
def my_func():
 return "Hello PyTexas"

result = my_func()
print(result)

34

Using Decorators to Enhance Capabilities
However, it seems odd to just throw the entire function away. Decorators are usually used to
add functionality to functions.

def reverse(func):
 def inner():
 x = func()
 return x[::-1]
 return inner

@reverse
def my_func():
 return "Hello PyTexas"

result = my_func()
print(result)

34

Using Decorators to Enhance Capabilities
However, it seems odd to just throw the entire function away. Decorators are usually used to
add functionality to functions.

def reverse(func):
 def inner():
 x = func()
 return x[::-1]
 return inner

@reverse
def my_func():
 return "Hello PyTexas"

result = my_func()
print(result)

34

Using Decorators to Enhance Capabilities
However, it seems odd to just throw the entire function away. Decorators are usually used to
add functionality to functions.

def reverse(func):
 def inner():
 x = func()
 return x[::-1]
 return inner

@reverse
def my_func():
 return "Hello PyTexas"

result = my_func()
print(result)

34

When are Decorators Run?
Decorators a run right after the
decorated function is defined.
This usually happens at import
time, i.e., when a module is
loaded by Python.

import time

def decorator(func):
 print("Decorator being run")
 def inner():
 return "Running inner"
 return inner

@decorator
def my_func():
 return "Hello PyTexas"

time.sleep(5)

print(my_func())

35

When are Decorators Run?
Decorators a run right after the
decorated function is defined.
This usually happens at import
time, i.e., when a module is
loaded by Python.

import time

def decorator(func):
 print("Decorator being run")
 def inner():
 return "Running inner"
 return inner

@decorator
def my_func():
 return "Hello PyTexas"

time.sleep(5)

print(my_func())

35

When are Decorators Run?
Decorators a run right after the
decorated function is defined.
This usually happens at import
time, i.e., when a module is
loaded by Python.

import time

def decorator(func):
 print("Decorator being run")
 def inner():
 return "Running inner"
 return inner

@decorator
def my_func():
 return "Hello PyTexas"

time.sleep(5)

print(my_func())

35

When are Decorators Run?
Decorators a run right after the
decorated function is defined.
This usually happens at import
time, i.e., when a module is
loaded by Python.

import time

def decorator(func):
 print("Decorator being run")
 def inner():
 return "Running inner"
 return inner

@decorator
def my_func():
 return "Hello PyTexas"

time.sleep(5)

print(my_func())

35

When are Decorators Run?
Decorators a run right after the
decorated function is defined.
This usually happens at import
time, i.e., when a module is
loaded by Python.

import time

def decorator(func):
 print("Decorator being run")
 def inner():
 return "Running inner"
 return inner

@decorator
def my_func():
 return "Hello PyTexas"

time.sleep(5)

print(my_func())

35

And now for something completely
different....

36

Variable Scoping Review

In order to fully understand closures, we need to take a step back
and review how scoping is handled in Python. Does this code run?

def f1(a):
 print(a)
 print(b)

f1(1)

37

Variable Scoping Review

In order to fully understand closures, we need to take a step back
and review how scoping is handled in Python. Does this code run?

def f1(a):
 print(a)
 print(b)

f1(1)

37

Variable Scoping Review Cont.

The variable b in this instance is known as a free variable, meaning
it is not bound to the local scope

b = 6
def f2(a):
 print(a)
 print(b)

f2(1)

38

Variable Scoping Review Cont.

The variable b in this instance is known as a free variable, meaning
it is not bound to the local scope

b = 6
def f2(a):
 print(a)
 print(b)

f2(1)

38

Variable Scoping Review Cont.

The variable b in this instance is known as a free variable, meaning
it is not bound to the local scope

b = 6
def f2(a):
 print(a)
 print(b)

f2(1)

38

Variable Scoping Review Cont.

The variable b in this instance is known as a free variable, meaning
it is not bound to the local scope

b = 6
def f2(a):
 print(a)
 print(b)

f2(1)

38

Variable Scoping Review Cont.

What about this?

d = 6
def f3(c):
 print(c)
 print(d)
 d = 8

f3(1)

39

Wait, what happened?

By assigning a value to d within the function, it was no longer
considered a free variable, but a local variable within the scope
of f3. This ignored the external declaration of d.

This is a design choice by Python, not a bug. It is designed to
prevent accidental mutation of global variables.

40

Global Variables

One way to fix this, use the global keyword to tell Python that the
variable is in face global.

f = 6
def f4(e):
 global f
 print(e)
 print(f)
 f = 8

f4(1)
print(f)

41

Global Variables

One way to fix this, use the global keyword to tell Python that the
variable is in face global.

f = 6
def f4(e):
 global f
 print(e)
 print(f)
 f = 8

f4(1)
print(f)

41

And back to your regularly
scheduled content!

42

Closures
A closure is a function with an extended scope that encompasses non-global variables
referenced in the body of the function but not defined there.

For example: How would you implement a function that has the following output?

>>> sum(1)
1
>>> sum(1)
2
>>> sum(4)
6

Your first thought may be to use a global variable, but global variables are often not best
practice here. This is where we use closures.

43

Implementing a Closure
Will this work?

def calc_sum():
 total = 0

 def add_num(num):
 total += num
 return total

 return add_num

sum = calc_sum()
sum(1)
sum(1)
sum(4)

44

The Closure Area

The area within the first function but external to the second function is
known as the closure.

def calc_sum():
 # BEGIN CLOSURE {
 total = 0
 # } END CLOSURE
 def add_num(num):
 total += num
 return total

 return add_num
45

The Closure Area

The area within the first function but external to the second function is
known as the closure.

def calc_sum():
 # BEGIN CLOSURE {
 total = 0
 # } END CLOSURE
 def add_num(num):
 total += num
 return total

 return add_num
45

Implementing a Closure Cont.
The nonlocal keyword let's us tell Python that a variable is not local to the scope of the function, but
should be allowed to be changed.

def calc_sum():
 total = 0

 def add_num(num):
 nonlocal total
 total += num
 return total

 return add_num

sum = calc_sum()
sum(1)
sum(1)
sum(4)

46

Implementing a Closure Cont.
The nonlocal keyword let's us tell Python that a variable is not local to the scope of the function, but
should be allowed to be changed.

def calc_sum():
 total = 0

 def add_num(num):
 nonlocal total
 total += num
 return total

 return add_num

sum = calc_sum()
sum(1)
sum(1)
sum(4)

46

Using Closures with Decorators
Now you can use closures to
maintain state in-between
decorator calls.

def count_calls(func):
 total = 0

 def count_invoke(name):
 nonlocal total
 func(name)
 total += 1
 return total

 return count_invoke

@count_calls
def sell_tickets(name):
 print(f"Ticket sold to {name}")

sell_tickets("Laura")
sell_tickets("Pandy")

47

Chaining Decorators

• Decorators can be chained together

• This means you can add more than one decorator to a
function

• Decorators are applied from bottom to top

@make_h1_md
@make_bold_md
def greeting(text):
 return text

48

Chaining Decorators

• Decorators can be chained together

• This means you can add more than one decorator to a
function

• Decorators are applied from bottom to top

@make_h1_md
@make_bold_md
def greeting(text):
 return text

48

Chaining Decorators

• Decorators can be chained together

• This means you can add more than one decorator to a
function

• Decorators are applied from bottom to top

@make_h1_md
@make_bold_md
def greeting(text):
 return text

48

Chaining Decorators

• Decorators can be chained together

• This means you can add more than one decorator to a
function

• Decorators are applied from bottom to top

@make_h1_md
@make_bold_md
def greeting(text):
 return text

48

Chaining Decorators Example
def make_h1_md(func):
 def wrapper(text):
 return "# " + func(text)
 return wrapper

def make_bold_md(func):
 def wrapper(text):
 return "**" + func(text) + "**"
 return wrapper

@make_h1_md
@make_bold_md
def greeting(text):
 return text

print(greeting("hello"))

49

Passing Parameters to Decorators
• It is also possible to pass a

parameter directy to the
decorator.

• In Flask you would apply the
app.route("/") decorator
to the function that will be
served at route /.

• However, doing this requires
wrapping your decorator in
another function and calling that.

def decorator_with_argument(name):
 def decorator(func):
 def wrapper(text):
 return func(text) + f" {name}"
 return wrapper
 return decorator

@decorator_with_argument("Mason")
def greeting(text):
 return text[0].upper() + text[1:]

greeting("hola")

50

Passing Parameters to Decorators
• It is also possible to pass a

parameter directy to the
decorator.

• In Flask you would apply the
app.route("/") decorator
to the function that will be
served at route /.

• However, doing this requires
wrapping your decorator in
another function and calling that.

def decorator_with_argument(name):
 def decorator(func):
 def wrapper(text):
 return func(text) + f" {name}"
 return wrapper
 return decorator

@decorator_with_argument("Mason")
def greeting(text):
 return text[0].upper() + text[1:]

greeting("hola")

50

Passing Parameters to Decorators
• It is also possible to pass a

parameter directy to the
decorator.

• In Flask you would apply the
app.route("/") decorator
to the function that will be
served at route /.

• However, doing this requires
wrapping your decorator in
another function and calling that.

def decorator_with_argument(name):
 def decorator(func):
 def wrapper(text):
 return func(text) + f" {name}"
 return wrapper
 return decorator

@decorator_with_argument("Mason")
def greeting(text):
 return text[0].upper() + text[1:]

greeting("hola")

50

Passing Parameters to Decorators
• It is also possible to pass a

parameter directy to the
decorator.

• In Flask you would apply the
app.route("/") decorator
to the function that will be
served at route /.

• However, doing this requires
wrapping your decorator in
another function and calling that.

def decorator_with_argument(name):
 def decorator(func):
 def wrapper(text):
 return func(text) + f" {name}"
 return wrapper
 return decorator

@decorator_with_argument("Mason")
def greeting(text):
 return text[0].upper() + text[1:]

greeting("hola")

50

Passing Parameters to Decorators
• It is also possible to pass a

parameter directy to the
decorator.

• In Flask you would apply the
app.route("/") decorator
to the function that will be
served at route /.

• However, doing this requires
wrapping your decorator in
another function and calling that.

def decorator_with_argument(name):
 def decorator(func):
 def wrapper(text):
 return func(text) + f" {name}"
 return wrapper
 return decorator

@decorator_with_argument("Mason")
def greeting(text):
 return text[0].upper() + text[1:]

greeting("hola")

50

Passing Parameters to Decorators
• It is also possible to pass a

parameter directy to the
decorator.

• In Flask you would apply the
app.route("/") decorator
to the function that will be
served at route /.

• However, doing this requires
wrapping your decorator in
another function and calling that.

def decorator_with_argument(name):
 def decorator(func):
 def wrapper(text):
 return func(text) + f" {name}"
 return wrapper
 return decorator

@decorator_with_argument("Mason")
def greeting(text):
 return text[0].upper() + text[1:]

greeting("hola")

50

Summary (Pt. 1)

• Decorators allow us to "mark" functions to enhance their
behavior

• Decorators are syntactic sugar for Higher-Order Functions

• Decorators return an entirely new function that may or may not
call the original function

• Decorators are first run at import time

51

Summary (Pt. 2)
• A closure is a function with an extended scope that encompasses nonglobal variables

referenced in the body of the function but not defined there.

• A variable is free if the variable can be accessed outside the scope it was defined in.

• A variable is local if it is defined within a scope

• A free variable can become local if you attempt to modify the variable within the
narrower scope, even if the variable was previously free

• Uses the nonlocal keyword to access allow for modification of a free variable
from within a narrower scope

• Decorators allow for reusability and promote a clean, concise coding style

52

Exercise 2 - Decorators and Closures
• In these exercises you will:

• Implement a debugging decorator that prints the variables and results of a
function

• Implement a silly decorator that gives you the result of the previous operation

• Go to the Exercise Directory in the Google Drive and open the Practice Directory

• Open 02-Decorators-and-Closures.ipynb and follow the instructions

• If you get stuck, raise your hand and someone will come by and help. You can also
check the Solution directory for the answers

• You have 10 mins

53

10 Minute Break

54

Part III: Comprehensions

55

Comprehensions
• Comprehensions provide a concise way to construct new sequences

• Lists

• Dictionaries

• Sets

• Generators

• Provides for better readability

• Better performance due to more optimized implementation

56

List Comprehensions

57

Creating a List of Even Numbers Using a Loop
Say we have the list [1, 2, 3, 4, 5, 6] and we wanted to create a new list
containing all of the even numbers

You could do this with a loop:

nums = [1, 2, 3, 4, 5, 6]
even_nums = []

for x in nums:
 if x % 2 == 0:
 even_nums.append(x)

print(nums)
print(even_nums)

58

Creating a List of Even Numbers Using a Loop
Say we have the list [1, 2, 3, 4, 5, 6] and we wanted to create a new list
containing all of the even numbers

You could do this with a loop:

nums = [1, 2, 3, 4, 5, 6]
even_nums = []

for x in nums:
 if x % 2 == 0:
 even_nums.append(x)

print(nums)
print(even_nums)

58

Creating a List of Even Numbers Using a Loop
Say we have the list [1, 2, 3, 4, 5, 6] and we wanted to create a new list
containing all of the even numbers

You could do this with a loop:

nums = [1, 2, 3, 4, 5, 6]
even_nums = []

for x in nums:
 if x % 2 == 0:
 even_nums.append(x)

print(nums)
print(even_nums)

58

Creating a List of Even Numbers Using a Loop
Say we have the list [1, 2, 3, 4, 5, 6] and we wanted to create a new list
containing all of the even numbers

You could do this with a loop:

nums = [1, 2, 3, 4, 5, 6]
even_nums = []

for x in nums:
 if x % 2 == 0:
 even_nums.append(x)

print(nums)
print(even_nums)

58

Creating a List of Even Numbers Using a Loop
Say we have the list [1, 2, 3, 4, 5, 6] and we wanted to create a new list
containing all of the even numbers

You could do this with a loop:

nums = [1, 2, 3, 4, 5, 6]
even_nums = []

for x in nums:
 if x % 2 == 0:
 even_nums.append(x)

print(nums)
print(even_nums)

58

Creating a List of Even Numbers Using a
Comprehension

You can do the same as above using a List Comprehension

nums = [1, 2, 3, 4, 5, 6]
even_nums = [x for x in nums if x % 2 == 0]

print(nums)
print(even_nums)

59

Creating a List of Even Numbers Using a
Comprehension

You can do the same as above using a List Comprehension

nums = [1, 2, 3, 4, 5, 6]
even_nums = [x for x in nums if x % 2 == 0]

print(nums)
print(even_nums)

59

Creating a List of Even Numbers Using a
Comprehension

You can do the same as above using a List Comprehension

nums = [1, 2, 3, 4, 5, 6]
even_nums = [x for x in nums if x % 2 == 0]

print(nums)
print(even_nums)

59

Creating a List of Even Numbers Using a
Comprehension

You can do the same as above using a List Comprehension

nums = [1, 2, 3, 4, 5, 6]
even_nums = [x for x in nums if x % 2 == 0]

print(nums)
print(even_nums)

59

Comprehension Layout
A Comprehension has three distinct parts:

• The variable result to store, with any operations (Required)

• x
• x*2 would also be valid

• The iteration (Required)

• for x in nums
• Conditional Logic (Optional)

• if x % 2 == 0

Not every Comprehension requires all three parts. And some comprehensions may be comprised of multile of the
sampe part.

60

For Example
nums = [1, 2, 3, 4, 5, 6]

Multiply List by 2
x2 = [x*2 for x in nums]
print(x2)

Get Even Nums
even = [x for x in nums if x %2 == 0]
print(even)

Multiple every element in the list by every other element in the list
in reverse
wat = [x * y for x in nums for y in nums[::-1]]
print(wat)

61

For Example
nums = [1, 2, 3, 4, 5, 6]

Multiply List by 2
x2 = [x*2 for x in nums]
print(x2)

Get Even Nums
even = [x for x in nums if x %2 == 0]
print(even)

Multiple every element in the list by every other element in the list
in reverse
wat = [x * y for x in nums for y in nums[::-1]]
print(wat)

61

For Example
nums = [1, 2, 3, 4, 5, 6]

Multiply List by 2
x2 = [x*2 for x in nums]
print(x2)

Get Even Nums
even = [x for x in nums if x %2 == 0]
print(even)

Multiple every element in the list by every other element in the list
in reverse
wat = [x * y for x in nums for y in nums[::-1]]
print(wat)

61

For Example
nums = [1, 2, 3, 4, 5, 6]

Multiply List by 2
x2 = [x*2 for x in nums]
print(x2)

Get Even Nums
even = [x for x in nums if x %2 == 0]
print(even)

Multiple every element in the list by every other element in the list
in reverse
wat = [x * y for x in nums for y in nums[::-1]]
print(wat)

61

For Example
nums = [1, 2, 3, 4, 5, 6]

Multiply List by 2
x2 = [x*2 for x in nums]
print(x2)

Get Even Nums
even = [x for x in nums if x %2 == 0]
print(even)

Multiple every element in the list by every other element in the list
in reverse
wat = [x * y for x in nums for y in nums[::-1]]
print(wat)

61

Cartesian Products (Matrix Multiplication)
with Loops

A common use case of list comprehensions is creating Cartesian
Products, or the multiplication of two lists

suits = ["\u2663", "\u2665", "\u2666", "\u2660"]
ranks = ['A', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K']

results = []

for suit in suits:
 for rank in ranks:
 results.append(f"{rank} of {suit}")

print(results)

62

Cartesian Products (Matrix Multiplication)
with Loops

A common use case of list comprehensions is creating Cartesian
Products, or the multiplication of two lists

suits = ["\u2663", "\u2665", "\u2666", "\u2660"]
ranks = ['A', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K']

results = []

for suit in suits:
 for rank in ranks:
 results.append(f"{rank} of {suit}")

print(results)

62

Cartesian Products (Matrix Multiplication)
with Loops

A common use case of list comprehensions is creating Cartesian
Products, or the multiplication of two lists

suits = ["\u2663", "\u2665", "\u2666", "\u2660"]
ranks = ['A', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K']

results = []

for suit in suits:
 for rank in ranks:
 results.append(f"{rank} of {suit}")

print(results)

62

Cartesian Products (Matrix Multiplication)
with Loops

A common use case of list comprehensions is creating Cartesian
Products, or the multiplication of two lists

suits = ["\u2663", "\u2665", "\u2666", "\u2660"]
ranks = ['A', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K']

results = []

for suit in suits:
 for rank in ranks:
 results.append(f"{rank} of {suit}")

print(results)

62

Cartesian Products (Matrix Multiplication)
with Loops

A common use case of list comprehensions is creating Cartesian
Products, or the multiplication of two lists

suits = ["\u2663", "\u2665", "\u2666", "\u2660"]
ranks = ['A', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K']

results = []

for suit in suits:
 for rank in ranks:
 results.append(f"{rank} of {suit}")

print(results)

62

Cartesian Products (Matrix Multiplication)
with Loops

A common use case of list comprehensions is creating Cartesian
Products, or the multiplication of two lists

suits = ["\u2663", "\u2665", "\u2666", "\u2660"]
ranks = ['A', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K']

results = []

for suit in suits:
 for rank in ranks:
 results.append(f"{rank} of {suit}")

print(results)

62

Cartesian Products (Matrix Multiplication)
with Loops

This can be simplified with a comprehension

suits = ["\u2663", "\u2665", "\u2666", "\u2660"]
ranks = ['A', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K']

results = [f"{rank} of {suit}" for suit in suits for rank in ranks]

print(results)

63

Cartesian Products (Matrix Multiplication)
with Loops

This can be simplified with a comprehension

suits = ["\u2663", "\u2665", "\u2666", "\u2660"]
ranks = ['A', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K']

results = [f"{rank} of {suit}" for suit in suits for rank in ranks]

print(results)

63

Cartesian Products (Matrix Multiplication)
with Loops

This can be simplified with a comprehension

suits = ["\u2663", "\u2665", "\u2666", "\u2660"]
ranks = ['A', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K']

results = [f"{rank} of {suit}" for suit in suits for rank in ranks]

print(results)

63

Cartesian Products (Matrix Multiplication)
with Loops

This can be simplified with a comprehension

suits = ["\u2663", "\u2665", "\u2666", "\u2660"]
ranks = ['A', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K']

results = [f"{rank} of {suit}" for suit in suits for rank in ranks]

print(results)

63

Cartesian Products (Matrix Multiplication)
with Loops

This can be simplified with a comprehension

suits = ["\u2663", "\u2665", "\u2666", "\u2660"]
ranks = ['A', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K']

results = [f"{rank} of {suit}" for suit in suits for rank in ranks]

print(results)

63

Dictionary Comprehensions

64

Dictionary Comprehensions

Similar to how we do a List Comprehension, we can also do a dictionary
comprehension

states = ["Texas", "New York", "Washington", "Ohio"]
cities = ["Austin", "Albany", "Olympia", "Columbus"]

result = {}

for state, city in zip(states, cities):
 result[state] = city

print(result)
65

Dictionary Comprehensions

Similar to how we do a List Comprehension, we can also do a dictionary
comprehension

states = ["Texas", "New York", "Washington", "Ohio"]
cities = ["Austin", "Albany", "Olympia", "Columbus"]

result = {}

for state, city in zip(states, cities):
 result[state] = city

print(result)
65

Dictionary Comprehensions

Similar to how we do a List Comprehension, we can also do a dictionary
comprehension

states = ["Texas", "New York", "Washington", "Ohio"]
cities = ["Austin", "Albany", "Olympia", "Columbus"]

result = {}

for state, city in zip(states, cities):
 result[state] = city

print(result)
65

Dictionary Comprehensions

Similar to how we do a List Comprehension, we can also do a dictionary
comprehension

states = ["Texas", "New York", "Washington", "Ohio"]
cities = ["Austin", "Albany", "Olympia", "Columbus"]

result = {}

for state, city in zip(states, cities):
 result[state] = city

print(result)
65

Dictionary Comprehensions

Similar to how we do a List Comprehension, we can also do a dictionary
comprehension

states = ["Texas", "New York", "Washington", "Ohio"]
cities = ["Austin", "Albany", "Olympia", "Columbus"]

result = {}

for state, city in zip(states, cities):
 result[state] = city

print(result)
65

Now with a Comprehension
states = ["Texas", "New York", "Washington", "Ohio"]
cities = ["Austin", "Albany", "Olympia", "Columbus"]

results = {city:state for (city, state) in zip(states, cities)}
print(results)

66

Now with a Comprehension
states = ["Texas", "New York", "Washington", "Ohio"]
cities = ["Austin", "Albany", "Olympia", "Columbus"]

results = {city:state for (city, state) in zip(states, cities)}
print(results)

66

Another Example

nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

results = {x:x**3 for x in nums if x % 2 != 0}

print(results)

67

Another Example

nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

results = {x:x**3 for x in nums if x % 2 != 0}

print(results)

67

Set and Generator Comprehensions

68

Set and Generator Comprehensions

• As you've seen, the syntax for Comprehensions is the same
regardless of sequence type.

• Sets and Generators are more niche, but still useful

69

Set Comprehensions

• Sets are a sequence in Python based on the mathematical Set.

• Sets are unordered, unchangeable, and unindexed

• By unchangeable, you can remove or add, but not modify

• Duplicates are not allowed

70

Removing Duplicates from a List

original_list = [1, 2, 2, 3, 4, 4, 5]
list_without_duplicates = []

for item in original_list:
 if item not in list_without_duplicates:
 list_without_duplicates.append(item)

print(list_without_duplicates)

71

Removing Duplicates from a List

original_list = [1, 2, 2, 3, 4, 4, 5]
list_without_duplicates = []

for item in original_list:
 if item not in list_without_duplicates:
 list_without_duplicates.append(item)

print(list_without_duplicates)

71

Removing Duplicates from a List

original_list = [1, 2, 2, 3, 4, 4, 5]
list_without_duplicates = []

for item in original_list:
 if item not in list_without_duplicates:
 list_without_duplicates.append(item)

print(list_without_duplicates)

71

Removing Duplicates from a List with Set
Comprehension

original_list = [1, 2, 2, 3, 4, 4, 5]

set_without_duplicates = {x for x in original_list}

print(set_without_duplicates)

72

Removing Duplicates from a List with Set
Comprehension

original_list = [1, 2, 2, 3, 4, 4, 5]

set_without_duplicates = {x for x in original_list}

print(set_without_duplicates)

72

Removing Duplicates from a List with Set
Comprehension

original_list = [1, 2, 2, 3, 4, 4, 5]

set_without_duplicates = {x for x in original_list}

print(set_without_duplicates)

72

Removing Duplicates from a List with just the
Set()

original_list = [1, 2, 2, 3, 4, 4, 5]
list_without_duplicates = list(set(original_list))

print(list_without_duplicates)

73

Removing Duplicates from a List with just the
Set()

original_list = [1, 2, 2, 3, 4, 4, 5]
list_without_duplicates = list(set(original_list))

print(list_without_duplicates)

73

Removing Duplicates from a List with just the
Set()

original_list = [1, 2, 2, 3, 4, 4, 5]
list_without_duplicates = list(set(original_list))

print(list_without_duplicates)

73

Warning! Sets Do NOT Preserve Order

One thing to keep in mind is that sets do not preserver order.
There is nothing guaranteeing that the order you see at one
execution will be the same at the next.

74

Generator Comprehensions
• Generators don't allocate memory for the whole list

• The generator each value one by one

• Very useful if the comprehension you are trying to perform is on large sequences

• Represented using () instead of []

nums = (1, 2, 3, 4, 5, 6)
even_nums_gen = (x for x in nums if x % 2 == 0)

print(nums)
print(even_nums_gen)
for var in even_nums_gen:
 print(var, end = ' ')

75

Generator Comprehensions
• Generators don't allocate memory for the whole list

• The generator each value one by one

• Very useful if the comprehension you are trying to perform is on large sequences

• Represented using () instead of []

nums = (1, 2, 3, 4, 5, 6)
even_nums_gen = (x for x in nums if x % 2 == 0)

print(nums)
print(even_nums_gen)
for var in even_nums_gen:
 print(var, end = ' ')

75

Generator Comprehensions
• Generators don't allocate memory for the whole list

• The generator each value one by one

• Very useful if the comprehension you are trying to perform is on large sequences

• Represented using () instead of []

nums = (1, 2, 3, 4, 5, 6)
even_nums_gen = (x for x in nums if x % 2 == 0)

print(nums)
print(even_nums_gen)
for var in even_nums_gen:
 print(var, end = ' ')

75

Generator Comprehensions
• Generators don't allocate memory for the whole list

• The generator each value one by one

• Very useful if the comprehension you are trying to perform is on large sequences

• Represented using () instead of []

nums = (1, 2, 3, 4, 5, 6)
even_nums_gen = (x for x in nums if x % 2 == 0)

print(nums)
print(even_nums_gen)
for var in even_nums_gen:
 print(var, end = ' ')

75

Generator Comprehensions
• Generators don't allocate memory for the whole list

• The generator each value one by one

• Very useful if the comprehension you are trying to perform is on large sequences

• Represented using () instead of []

nums = (1, 2, 3, 4, 5, 6)
even_nums_gen = (x for x in nums if x % 2 == 0)

print(nums)
print(even_nums_gen)
for var in even_nums_gen:
 print(var, end = ' ')

75

Generator Comprehensions
• Generators don't allocate memory for the whole list

• The generator each value one by one

• Very useful if the comprehension you are trying to perform is on large sequences

• Represented using () instead of []

nums = (1, 2, 3, 4, 5, 6)
even_nums_gen = (x for x in nums if x % 2 == 0)

print(nums)
print(even_nums_gen)
for var in even_nums_gen:
 print(var, end = ' ')

75

Summary (Pt. 1)
• Comprehensions provide a concise way to construct new sequences

• Lists

• Dictionaries

• Sets

• Generators

• Provides for better readability

• Better performance due to more optimized implementation

76

Summary (Pt. 2)
• A Comprehension has three distinct parts:

• The variable result to store, with any operations (Required)

• x
• x*2 would also be valid

• The iteration (Required)

• for x in nums
• Conditional Logic (Optional)

• if x % 2 == 0
77

Summary (Pt. 3)

• Not every Comprehension requires all three parts. And some
comprehensions may be comprised of multile of the sampe
part.

• Set comprehensions are useful, but order is not preserved

• Generator comprehensions don't load the sequence in to
memory, and instead generates it on demand, saving resources

78

Exercise 3 - Comprehensions
• In these exercises you will:

• Implement a comprehension to return a list of people's initials given their names

• Implement a comprehension to return a list of vowels in a string, with each vowel that is present only
appearing in the result once

• Implement a comprehension to return all possible class/race combinations from the lists of DND
classes and races provided.

• Go to the Exercise Directory in the Google Drive and open the Practice Directory

• Open 03-Comprehensions.ipynb and follow the instructions

• If you get stuck, raise your hand and someone will come by and help. You can also check the Solution
directory for the answers

• You have 10 mins

79

Part IV: Special Methods and
Operator Overloading

80

Special Methods and Operator
Overloading

81

Special or Magic or Dunder Methods
• Special, Magic, or Dunder, methods are special methods within Python associated with an

object

• The term "dunder" comes from "double underscore", which is a characteristic of these
methods

• __init__

• __str__

• __len__

• etc.

• There are many special methods in Python that are at the core of Python and how it supports
its object-oriented features

82

Under the Hood

• Many operations within Python implicitly call magic methods to
execute certain operations

• These methods are not intended to be directly called by you, but
you can override them as we'll see later.

3 + 4

Under the hood this calls

(3).__add__(4)

83

A Few Magic Methods

84

Controlling the Object Creation Process
• When you call a class constructer you create a new instance of that class

• When this happens Python invokes the __new__() method as the first step

• This method is responsible for creating and returning a new empty object
of this class

• This new object is then passed to __init__() to initialize the object with
the appropriate values and properties

• If you're familiar with OOP concepts, this is the Contstructor

• Remember, all methods talk a first argument traditionally named self
85

__init__() Example

class Person:

 def __init__(self, first_name, last_name):
 self.first_name = first_name
 self.last_name = last_name

mason = Person("Mason", "Egger")
print(mason)

86

__init__() Example

class Person:

 def __init__(self, first_name, last_name):
 self.first_name = first_name
 self.last_name = last_name

mason = Person("Mason", "Egger")
print(mason)

86

__init__() Example

class Person:

 def __init__(self, first_name, last_name):
 self.first_name = first_name
 self.last_name = last_name

mason = Person("Mason", "Egger")
print(mason)

86

__init__() Example

class Person:

 def __init__(self, first_name, last_name):
 self.first_name = first_name
 self.last_name = last_name

mason = Person("Mason", "Egger")
print(mason)

86

Representing Objects as Strings

To represent the object as a human-readable string instead of the object reference,
implement the __str__() method.

class Person:

 def __init__(self, first_name, last_name):
 self.first_name = first_name
 self.last_name = last_name

 def __str__(self):
 return f"{self.first_name} {self.last_name}"

mason = Person("Mason", "Egger")
print(mason)

87

Representing Objects as Strings

To represent the object as a human-readable string instead of the object reference,
implement the __str__() method.

class Person:

 def __init__(self, first_name, last_name):
 self.first_name = first_name
 self.last_name = last_name

 def __str__(self):
 return f"{self.first_name} {self.last_name}"

mason = Person("Mason", "Egger")
print(mason)

87

Making Your Objects Callable with call
You can implement the __call__() method to make your object callable after creation

class Factorial:
 def __init__(self):
 self._cache = {0: 1, 1: 1}

 def __call__(self, number):
 if number not in self._cache:
 self._cache[number] = number * self(number - 1)
 return self._cache[number]

factorial = Factorial()

print(factorial(4))
print(factorial(5))
print(factorial(6))

Considered by some to be an anti-pattern

88

Operator Overloading

89

Operator Overloading
Operator overloading is redefining the behavior of built-in operators for use with user-defined classes in Python.

This is a very powerful feature in programming languages and can easily lead to confusion and errors. Use
caution when overloading operators.

A few things to remember:

• Cannot overload operators for the built-in types

• Cannot create new operators, only overload existing ones

• A few operators can't be overloaded

• is, and, or, not
• Although the bitwise operators can be

90

Overriding Mathematical Operators
• The operators +, -, *, /, etc. can be overridden for use with your custom object

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __add__(self, other):
 new_x = self.x + other.x
 new_y = self.y + other.y
 return Point(new_x, new_y)

 def __str__(self):
 return f"Point ({self.x}, {self.y})"

x = Point(1, 2)
y = Point(3, 4)

x + y

91

Overriding Mathematical Operators
• The operators +, -, *, /, etc. can be overridden for use with your custom object

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __add__(self, other):
 new_x = self.x + other.x
 new_y = self.y + other.y
 return Point(new_x, new_y)

 def __str__(self):
 return f"Point ({self.x}, {self.y})"

x = Point(1, 2)
y = Point(3, 4)

x + y

91

Overriding Mathematical Operators
• The operators +, -, *, /, etc. can be overridden for use with your custom object

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __add__(self, other):
 new_x = self.x + other.x
 new_y = self.y + other.y
 return Point(new_x, new_y)

 def __str__(self):
 return f"Point ({self.x}, {self.y})"

x = Point(1, 2)
y = Point(3, 4)

x + y

91

Overriding Mathematical Operators
• The operators +, -, *, /, etc. can be overridden for use with your custom object

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __add__(self, other):
 new_x = self.x + other.x
 new_y = self.y + other.y
 return Point(new_x, new_y)

 def __str__(self):
 return f"Point ({self.x}, {self.y})"

x = Point(1, 2)
y = Point(3, 4)

x + y

91

Overriding Mathematical Operators
• The operators +, -, *, /, etc. can be overridden for use with your custom object

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __add__(self, other):
 new_x = self.x + other.x
 new_y = self.y + other.y
 return Point(new_x, new_y)

 def __str__(self):
 return f"Point ({self.x}, {self.y})"

x = Point(1, 2)
y = Point(3, 4)

x + y

91

Wait, why didn't my string get printed?

• __str__() produces a nice, human readable format when the
object is being requested as a string, such as in a print
statement

• __repr__() is more for developers. It is an unambiguous
string representation and will be interpreted by the interpreter
correctly. It should list enough information that you are able to
recreate the object from it.

• When in doubt, implement both

92

Overloading Comparison Operators
• You can also overload comparison operators such as ==, !=, >, <, <=, etc.

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __eq__(self, other):
 if self.x == other.x and self.y == other.y:
 return True
 return False

x = Point(1, 2)
y = Point(3, 4)
z = Point(1,2)

print(x == y)
print(x == z)
print(x == x)
print(z == x)

93

Overloading Comparison Operators
• You can also overload comparison operators such as ==, !=, >, <, <=, etc.

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __eq__(self, other):
 if self.x == other.x and self.y == other.y:
 return True
 return False

x = Point(1, 2)
y = Point(3, 4)
z = Point(1,2)

print(x == y)
print(x == z)
print(x == x)
print(z == x)

93

Overloading Comparison Operators
• You can also overload comparison operators such as ==, !=, >, <, <=, etc.

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __eq__(self, other):
 if self.x == other.x and self.y == other.y:
 return True
 return False

x = Point(1, 2)
y = Point(3, 4)
z = Point(1,2)

print(x == y)
print(x == z)
print(x == x)
print(z == x)

93

Overloading Comparison Operators
• You can also overload comparison operators such as ==, !=, >, <, <=, etc.

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __eq__(self, other):
 if self.x == other.x and self.y == other.y:
 return True
 return False

x = Point(1, 2)
y = Point(3, 4)
z = Point(1,2)

print(x == y)
print(x == z)
print(x == x)
print(z == x)

93

Overloading Comparison Operators
• You can also overload comparison operators such as ==, !=, >, <, <=, etc.

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __eq__(self, other):
 if self.x == other.x and self.y == other.y:
 return True
 return False

x = Point(1, 2)
y = Point(3, 4)
z = Point(1,2)

print(x == y)
print(x == z)
print(x == x)
print(z == x)

93

And so much more!

We only scratched the surface of special methods. There are 80+
special methods that allow you to control nearly every aspect of
your objects. Visit the Python Documentation to learn about more.

94

https://docs.python.org/3/reference/datamodel.html#specialnames

Summary
• Special, Magic, or Dunder, methods are special methods within Python associated

with an object

• The term "dunder" comes from "double underscore", which is a characteristic of these
methods

• There are many magic methods in Python that are at the core of Python and how it
supports its object-oriented features

• Many operations within Python implicitly call magic methods to execute certain
operations

• These methods are not intended to be directly called by you, but you can override
them to modify the functionality.

95

Exercise 4 - Special Methods

• In these exercises you will implement a Stack using only special methods

• Go to the Exercise Directory in the Google Drive and open the Practice
Directory

• Open 04-Special-Methods-and-Operator-Overloading.ipynb and follow the
instructions

• If you get stuck, raise your hand and someone will come by and help. You
can also check the Solution directory for the answers

• You have 15 mins

96

10 Minute Break

97

Part V: Context Managers

98

Who's seen something like this before?

with open("file.txt", "w") as fh:
 text = fh.write("Hello")

99

Context Managers

• Also lovingly called the with block

• Flow control feature built into Python that's not often seen in other
languages

• Sets up a temporary context and reliably tears it down

• Guarantee that some operation is performed both prior to and after a
block of code, even in the case of an exception, return, or exit

• Allows for reusability, results in cleaner code, and is considered
Pythonic

100

Possible Use Cases
• File Management

• Sessions

• Thread pools

• Locking

• Game environments (ppb)

• Mocking and Testing

• Logging

• And More!

101

Examples

Example 1

with open("file.txt", "r") as fh:
 text = fh.read()

Example 2

with ThreadPoolExecutor() as executor:
 for i in range(N):
 executor.submit(my_function, arg1, arg2)

102

Examples

Example 1

with open("file.txt", "r") as fh:
 text = fh.read()

Example 2

with ThreadPoolExecutor() as executor:
 for i in range(N):
 executor.submit(my_function, arg1, arg2)

102

Examples

Example 1

with open("file.txt", "r") as fh:
 text = fh.read()

Example 2

with ThreadPoolExecutor() as executor:
 for i in range(N):
 executor.submit(my_function, arg1, arg2)

102

Examples

Example 1

with open("file.txt", "r") as fh:
 text = fh.read()

Example 2

with ThreadPoolExecutor() as executor:
 for i in range(N):
 executor.submit(my_function, arg1, arg2)

102

More Examples

async def fetch(client):
 async with client.get('http://python.org') as resp:
 assert resp.status == 200
 return await resp.text()

async def main():
 async with aiohttp.ClientSession() as client:
 html = await fetch(client)
 print(html)

asyncio.run(main())

103

More Examples

async def fetch(client):
 async with client.get('http://python.org') as resp:
 assert resp.status == 200
 return await resp.text()

async def main():
 async with aiohttp.ClientSession() as client:
 html = await fetch(client)
 print(html)

asyncio.run(main())

103

More Examples

async def fetch(client):
 async with client.get('http://python.org') as resp:
 assert resp.status == 200
 return await resp.text()

async def main():
 async with aiohttp.ClientSession() as client:
 html = await fetch(client)
 print(html)

asyncio.run(main())

103

More Examples

async def fetch(client):
 async with client.get('http://python.org') as resp:
 assert resp.status == 200
 return await resp.text()

async def main():
 async with aiohttp.ClientSession() as client:
 html = await fetch(client)
 print(html)

asyncio.run(main())

103

More Examples

async def fetch(client):
 async with client.get('http://python.org') as resp:
 assert resp.status == 200
 return await resp.text()

async def main():
 async with aiohttp.ClientSession() as client:
 html = await fetch(client)
 print(html)

asyncio.run(main())

103

More Examples

async def fetch(client):
 async with client.get('http://python.org') as resp:
 assert resp.status == 200
 return await resp.text()

async def main():
 async with aiohttp.ClientSession() as client:
 html = await fetch(client)
 print(html)

asyncio.run(main())

103

Create Your Own Context Manager

• Creating a class and defining the __enter__ and __exit__
special methods

• Creating a function and using the contextlib library

104

Implementing a Context Manager as
a Class

105

Context Manager as a Class __enter__()
• The __enter__ magic method is invoked at the start of execution on the context manager object

• All code within the the __enter__ method is executed prior to the code within the block

• Can only have self as a parameter

class MyContextManager:

 def __enter__(self):
 print("Hello")

 def __exit__(self, exc_type, exc_value, traceback):
 pass

with MyContextManager():
 print("hi")

106

Context Manager as a Class __enter__()
• The __enter__ magic method is invoked at the start of execution on the context manager object

• All code within the the __enter__ method is executed prior to the code within the block

• Can only have self as a parameter

class MyContextManager:

 def __enter__(self):
 print("Hello")

 def __exit__(self, exc_type, exc_value, traceback):
 pass

with MyContextManager():
 print("hi")

106

__enter__() Return Value
• The __enter__() method may return an object

• The value will be returned when invoking the Context Manager

class MyContextManager:

 def __enter__(self):
 print("Hello")
 return("Hola")

 def __exit__(self, exc_type, exc_value, traceback):
 pass

with MyContextManager() as cm:
 print("hi")
print(cm)

107

Passing Parameters to your Context Manager
• Context Managers are classes, and creating an instance of the Context Manager will invoke __init__()
• Pass any parameters you'd like to include in your Context Manager into __init__()

class MyContextManager:

 def __init__(self, name):
 self.name = name

 def __enter__(self):
 print(f"Hello {self.name}")
 return("Hola")

 def __exit__(self, exc_type, exc_value, traceback):
 pass

with MyContextManager("Mason") as cm:
 print("hi")
print(cm)

108

Passing Parameters to your Context Manager
• Context Managers are classes, and creating an instance of the Context Manager will invoke __init__()
• Pass any parameters you'd like to include in your Context Manager into __init__()

class MyContextManager:

 def __init__(self, name):
 self.name = name

 def __enter__(self):
 print(f"Hello {self.name}")
 return("Hola")

 def __exit__(self, exc_type, exc_value, traceback):
 pass

with MyContextManager("Mason") as cm:
 print("hi")
print(cm)

108

Passing Parameters to your Context Manager
• Context Managers are classes, and creating an instance of the Context Manager will invoke __init__()
• Pass any parameters you'd like to include in your Context Manager into __init__()

class MyContextManager:

 def __init__(self, name):
 self.name = name

 def __enter__(self):
 print(f"Hello {self.name}")
 return("Hola")

 def __exit__(self, exc_type, exc_value, traceback):
 pass

with MyContextManager("Mason") as cm:
 print("hi")
print(cm)

108

__exit__()
• The __exit__() special method is invoked after the execution of the body of the Context Manager

class MyContextManager:

 def __init__(self, name):
 self.name = name

 def __enter__(self):
 print(f"Hello {self.name}")
 return("Hola")

 def __exit__(self, exc_type, exc_value, traceback):
 print("Finished")

with MyContextManager("Mason") as cm:
 print("hi")
print(cm)

109

__exit__()
• The __exit__() special method is invoked after the execution of the body of the Context Manager

class MyContextManager:

 def __init__(self, name):
 self.name = name

 def __enter__(self):
 print(f"Hello {self.name}")
 return("Hola")

 def __exit__(self, exc_type, exc_value, traceback):
 print("Finished")

with MyContextManager("Mason") as cm:
 print("hi")
print(cm)

109

__exit__() Exceptions
• __exit__() returns a

Boolean flag indicating if an
exception that occurred
should be suppressed

• If True, the exception will
be suppressed.

• Otherwise the exception
will continue propagating
up.

class MyContextManager:

 def __init__(self, name):
 self.name = name

 def __enter__(self):
 print(f"Hello {self.name}")
 return("Hola")

 def __exit__(self, exc_type,
 exc_value, traceback):
 print("Finished")
 return True

with MyContextManager("Mason") as cm:
 print("hi")
 raise Exception
print(cm)

110

__exit__() Exceptions
• __exit__() returns a

Boolean flag indicating if an
exception that occurred
should be suppressed

• If True, the exception will
be suppressed.

• Otherwise the exception
will continue propagating
up.

class MyContextManager:

 def __init__(self, name):
 self.name = name

 def __enter__(self):
 print(f"Hello {self.name}")
 return("Hola")

 def __exit__(self, exc_type,
 exc_value, traceback):
 print("Finished")
 return True

with MyContextManager("Mason") as cm:
 print("hi")
 raise Exception
print(cm)

110

__exit__() Parameters
• __exit()__ takes three

arguments

• exc_type - The exception
class

• exc_val - The exception
instance

• traceback - A traceback
object

class MyContextManager:

 def __init__(self, name):
 self.name = name

 def __enter__(self):
 print(f"Hello {self.name}")
 return("Hola")

 def __exit__(self, exc_type,
 exc_value, traceback):
 safe_exception = False
 if exc_type is ZeroDivisionError:
 print(f"Exception: {exc_value}")
 safe_exception = True
 print("Finished")
 return safe_exception

with MyContextManager("Mason") as cm:
 print("hi")
 1/0
print(cm)

111

__exit__() Parameters
• __exit()__ takes three

arguments

• exc_type - The exception
class

• exc_val - The exception
instance

• traceback - A traceback
object

class MyContextManager:

 def __init__(self, name):
 self.name = name

 def __enter__(self):
 print(f"Hello {self.name}")
 return("Hola")

 def __exit__(self, exc_type,
 exc_value, traceback):
 safe_exception = False
 if exc_type is ZeroDivisionError:
 print(f"Exception: {exc_value}")
 safe_exception = True
 print("Finished")
 return safe_exception

with MyContextManager("Mason") as cm:
 print("hi")
 1/0
print(cm)

111

__exit__() Parameters
• __exit()__ takes three

arguments

• exc_type - The exception
class

• exc_val - The exception
instance

• traceback - A traceback
object

class MyContextManager:

 def __init__(self, name):
 self.name = name

 def __enter__(self):
 print(f"Hello {self.name}")
 return("Hola")

 def __exit__(self, exc_type,
 exc_value, traceback):
 safe_exception = False
 if exc_type is ZeroDivisionError:
 print(f"Exception: {exc_value}")
 safe_exception = True
 print("Finished")
 return safe_exception

with MyContextManager("Mason") as cm:
 print("hi")
 1/0
print(cm)

111

Implementing a Context Manager as
a Function Using contextlib

112

Context Manager as a Function with
contextlib

• Anther way to implement a Context Manager is through the use of functions, generators, and the contextlib library

• Use the @contextlib.contextmanager decorator to designate a function as a context manager

• Use the yield builtin to separate the enter and exit sections

import contextlib

@contextlib.contextmanager
def my_context_manager(name):
 print(f"Hello {name}")
 yield "Hola"
 print("Finished")

with my_context_manager("Mason") as cm:
 print("hi")
print(cm)

113

Context Manager as a Function with
contextlib

• Anther way to implement a Context Manager is through the use of functions, generators, and the contextlib library

• Use the @contextlib.contextmanager decorator to designate a function as a context manager

• Use the yield builtin to separate the enter and exit sections

import contextlib

@contextlib.contextmanager
def my_context_manager(name):
 print(f"Hello {name}")
 yield "Hola"
 print("Finished")

with my_context_manager("Mason") as cm:
 print("hi")
print(cm)

113

Context Manager as a Function with
contextlib

• Anther way to implement a Context Manager is through the use of functions, generators, and the contextlib library

• Use the @contextlib.contextmanager decorator to designate a function as a context manager

• Use the yield builtin to separate the enter and exit sections

import contextlib

@contextlib.contextmanager
def my_context_manager(name):
 print(f"Hello {name}")
 yield "Hola"
 print("Finished")

with my_context_manager("Mason") as cm:
 print("hi")
print(cm)

113

Context Manager as a Function with
contextlib

• Anther way to implement a Context Manager is through the use of functions, generators, and the contextlib library

• Use the @contextlib.contextmanager decorator to designate a function as a context manager

• Use the yield builtin to separate the enter and exit sections

import contextlib

@contextlib.contextmanager
def my_context_manager(name):
 print(f"Hello {name}")
 yield "Hola"
 print("Finished")

with my_context_manager("Mason") as cm:
 print("hi")
print(cm)

113

Context Manager as a Function with
contextlib

• Anther way to implement a Context Manager is through the use of functions, generators, and the contextlib library

• Use the @contextlib.contextmanager decorator to designate a function as a context manager

• Use the yield builtin to separate the enter and exit sections

import contextlib

@contextlib.contextmanager
def my_context_manager(name):
 print(f"Hello {name}")
 yield "Hola"
 print("Finished")

with my_context_manager("Mason") as cm:
 print("hi")
print(cm)

113

Context Manager as a Function with
contextlib

• Anther way to implement a Context Manager is through the use of functions, generators, and the contextlib library

• Use the @contextlib.contextmanager decorator to designate a function as a context manager

• Use the yield builtin to separate the enter and exit sections

import contextlib

@contextlib.contextmanager
def my_context_manager(name):
 print(f"Hello {name}")
 yield "Hola"
 print("Finished")

with my_context_manager("Mason") as cm:
 print("hi")
print(cm)

113

Comparisson between Class and
contextlib

114

Context Manager as a Function with
contextlib Exceptions

• Handle exceptions with try/
except/finally

import contextlib

@contextlib.contextmanager
def my_context_manager(name):
 print(f"Hello {name}")
 try:
 yield "Hola"
 except Exception as e:
 print(f"Exception occurred: {e}")
 finally:
 print("Finished")

with my_context_manager("Mason") as cm:
 print("hi")
 raise Exception("Oops")

print(cm)

115

Context Manager as a Function with
contextlib Exceptions

• Handle exceptions with try/
except/finally

import contextlib

@contextlib.contextmanager
def my_context_manager(name):
 print(f"Hello {name}")
 try:
 yield "Hola"
 except Exception as e:
 print(f"Exception occurred: {e}")
 finally:
 print("Finished")

with my_context_manager("Mason") as cm:
 print("hi")
 raise Exception("Oops")

print(cm)

115

Context Manager as a Function with
contextlib Exceptions

• Handle exceptions with try/
except/finally

import contextlib

@contextlib.contextmanager
def my_context_manager(name):
 print(f"Hello {name}")
 try:
 yield "Hola"
 except Exception as e:
 print(f"Exception occurred: {e}")
 finally:
 print("Finished")

with my_context_manager("Mason") as cm:
 print("hi")
 raise Exception("Oops")

print(cm)

115

Summary
• Context managers are a flow control mechanism that sets up a temporary context and reliably tears it down.

• Two ways of implementing:

• As a Class, using the enter and exit magic methods

• Passing in a variable is done via init

• Returning True from exit will supress Exceptions raised in the invocation

• As a decorated function using contextlib

• Entrance and exit code separate by a yield statement that provides the value assigned to the variable in
the as clause

• Exceptions handled with a try/except/finally

• If you make changes during the system within the scope of the context manager, be sure to set the back

116

Exercise

• In these exercises you will custom context manager that reads in a
file and prints it in reverse

• Go to the Exercise Directory in the Google Drive and open the Practice
Directory

• Open 05-Context-Managers.ipynb and follow the instructions

• If you get stuck, raise your hand and someone will come by and help.
You can also check the Solution directory for the answers

• You have 15 mins
117

Workshop Summary

118

Summary (Pt. 1)

• Functions are considered First-Class in Python

• First-Class means that the function is treated like an object

• Just like other objects, functions can be:

• Created at runtime

• Assigned to a variable or element in a data structure

• Passed as an argument to a function

• Returned as the result of a function
119

Summary (Pt. 2)

• Functions that take other functions as parameters, or return a
function as a result is known as a Higher-Order Function

• Anonymous functions are implemented using the lambda
keyword, and are good for creating concise, one off functions.

120

Summary (Pt. 3)

• Decorators allow us to "mark" functions to enhance their
behavior

• Decorators are syntactic sugar for Higher-Order Functions

• Decorators return an entirely new function that may or may not
call the original function

• Decorators are first run at import time

121

Summary (Pt. 4)
• A closure is a function with an extended scope that encompasses nonglobal variables

referenced in the body of the function but not defined there.

• A variable is free if the variable can be accessed outside the scope it was defined in.

• A variable is local if it is defined within a scope

• A free variable can become local if you attempt to modify the variable within the
narrower scope, even if the variable was previously free

• Uses the nonlocal keyword to access allow for modification of a free variable
from within a narrower scope

• Decorators allow for reusability and promote a clean, concise coding style

122

Summary (Pt. 5)
• Comprehensions provide a concise way to construct new sequences

• Lists

• Dictionaries

• Sets

• Generators

• Provides for better readability

• Better performance due to more optimized implementation

123

Summary (Pt. 6)
• A Comprehension has three distinct parts:

• The variable result to store, with any operations (Required)

• x
• x*2 would also be valid

• The iteration (Required)

• for x in nums
• Conditional Logic (Optional)

• if x % 2 == 0
124

Summary (Pt. 7)

• Not every Comprehension requires all three parts. And some
comprehensions may be comprised of multile of the sampe
part.

• Set comprehensions are useful, but order is not preserved

• Generator comprehensions don't load the sequence in to
memory, and instead generates it on demand, saving resources

125

Summary (Pt. 8)
• Special, Magic, or Dunder, methods are special methods within Python associated

with an object

• The term "dunder" comes from "double underscore", which is a characteristic of these
methods

• There are many magic methods in Python that are at the core of Python and how it
supports its object-oriented features

• Many operations within Python implicitly call magic methods to execute certain
operations

• These methods are not intended to be directly called by you, but you can override
them to modify the functionality.

126

Summary (Pt. 9)
• Context managers are a flow control mechanism that sets up a temporary context and reliably tears it down.

• Two ways of implementing:

• As a Class, using the enter and exit magic methods

• Passing in a variable is done via init

• Returning True from exit will supress Exceptions raised in the invocation

• As a decorated function using contextlib

• Entrance and exit code separate by a yield statement that provides the value assigned to the variable in
the as clause

• Exceptions handled with a try/except/finally

• If you make changes during the system within the scope of the context manager, be sure to set the back

127

Thank You

• Thank you for being part of Tutorials at PyTexas

• This is the first time we've done Tutorials since 2017

• You can find me on the socials mason.dev/links

• If your interested in learning Durable Execution and Temporal,

check out learn.temporal.io

• Maybe you just want to learn more from me

128

https://mason.dev/links
https://learn.temporal.io

